On maximal curves over finite fields of small order
نویسندگان
چکیده
منابع مشابه
On the order of points on curves over finite fields
We discuss the problem of constructing elements of multiplicative high order in finite fields of large degree over their prime field. We prove that for points on a plane curve, one of the coordinates has to have high order. We also discuss a conjecture of Poonen for subvarieties of semiabelian varieties for which our result is a weak special case. Finally, we look at some special cases where we...
متن کاملOn Curves over Finite Fields with Jacobians of Small Exponent
We show that finite fields over which there is a curve of a given genus g ≥ 1 with its Jacobian having a small exponent, are very rare. This extends a recent result of W. Duke in the case g = 1. We also show when g = 1 or g = 2 that our bounds are best possible.
متن کاملOn counting and generating curves over small finite fields
We consider curves defined over small finite fields with points of large prime order over an extension field. Such curves are often referred to as Koblitz curves and are of considerable cryptographic interest. An interesting question is whether such curves are easy to construct as the target point order grows asymptotically. We show that under certain number theoretic conjecture, if q is a prim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics of Communications
سال: 2012
ISSN: 1930-5346
DOI: 10.3934/amc.2012.6.107